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An Exactly Solved Model with a Wetting Transition 
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A model of a binary mixture, showing a wetting transition, is examined. No 
prewetting phenomena are found. The scaling functions are obtained for the film 
thickness and for the correlation lengths. 
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1. I N T R O D U C T I O N  

Consider a thermodynamic system at equilibrium in phase A, which is 
precisely at coexistence with a second phase B. If the phase B is sufficiently 
attracted by the wall of the container enclosing the bulk phase A, then a 
phase transition from partial to complete wetting may be observed under 
appropriate conditions. (1) In the completely wet state, a film of bulk phase 
B is inserted at the wall; it is separated from the bulk phase A by an A ]B 
interface which behaves independently of what is happening at the wall and 
has an incremental free energy zAe per unit area. On the other hand, under 
partially wet conditions, there is a contact angle 0 at the wall, as shown in 
Fig. 1. Following Cahn (2,31, this should satisfy the Young-Dupr6 equation 

~ A W - -  "C B W  = "CAB COS 0 (1.1) 

for mechanical equilibrium, where ~i~v is the incremental free energy per 
umt area for contact between phase i = A, B and the wall. 

Suppose that 

~AW--  Z B W >  VAB (1.2) 
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Fig. 1. Sketch of two droplets of phase B against a wall in equilibrium with a bulk phase A, 
to illustrate contact angle 0. 

Then (1.1) has no solution for real 0 and complete wetting should obtain. 
The statement that tAB ~ 0 as T--* T,7 together with continuity implies 

that (1.2) will always be satisfied near the critical point is not strictly valid, 
since z A w - z B w  might well vanish faster. 

A more subtle criticism is that (1.2) refers to rs~v in a situation where 
a B W  interface is thermodynamically unstable, so that it really begs the 
question. (4) Further, referring to Fig. 1, if the bubbles at the wall in the 
partially wet regime are not significantly bigger than or commensurate with 
the bulk correlation length, then the thermodynamic concept of surface 
tension could hardly be expected to apply. 

It should be clear then that this simple scenario, its intuitive appeal 
notwithstanding, requires further investigation. 

A two-dimensional lattice gas model has been constructed, (5'6/ 
however, which is exactly solvable and which shows a phase transition of 
the type predicted by the Cahn argument. (2) This model is only solvable 
with existing techniques at coexistence of the bulk phases. The purpose of 
the present paper is to describe in detail results reported (7) for a simplified 
model which is again exactly solvable and which works away from 
coexistence. By virtue of its simplicity, it also allows a more detailed 
examination of the geometry of the phases. 

Let us assume at the outset that the phase transition is associated with 
fluctuations of the interface on a scale much longer than the correlation 
length. By a thought-renormalization to this length scale, the intrinsic fluc- 
tuations of the pure phases are made to disappear; the fluctuations of the 
A IB interface are controlled by a surface tension rather than a "bare" or 
microscopic coupling. The idea is to construct a probabilistic model for 
these fluctuations which is simple enough to solve. This is unlike the usual 
approach through a "molecular" Hamiltonian, but it is remarkably useful 
as the reader can find in recent work of Fisher and Huse (8'9) where a wide 
range of problems are analyzed. 



An Exactly Solved Model with a Wett ing Transition 623 

I I .  M O D E L S  

Consider a two-dimensional square lattice with a spin a ( i ) =  _+1 at 
each lattice site i = ( i l ,  i2 )  with - M ~< i2 ~< M. The spins are coupled by the 
Ising Hamiltonian 

= ~4~(A) + ~ ( 0 A )  (2.1) 

where ~ ( A )  is the usual bulk term given by 

fl~tO(A) = _ }-] Kl~r(i,j) a ( i+ l , j )+K2a( i , j )~ ( i , j+ l )  
j=--M i 1 

N--1 t + h ~, a(i,j) (2.2) 
i = 2  

with cyclic conditions in the (0, 1) direction, where K~ and /s are strictly 
positive couplings scaled by /?= 1/kT in the customary notation for the 
canonical ensemble and h is the bulk field which is zero at coexistence 
[10]. 

The extra term in (2.1) acts on the surface 

M 

~ ( 0 A ) = -  ~, {h(i) a(1, i)+h'(i)a(N,i)} (2.3) 
i - -  M 

As is well-known, the planar Ising model has yet to be solved with h # 0 
(bulk field). The selection of bulk phase, however, can be achieved by 
choice of boundary fields, (11) which can be handled within the fermion 
framework. Suppose, in lattice gas language, the presence of a molecule A 
corresponds to a =  +1. Then the limiting process h ' ( i ) ~  oo, h ( i ) = 0  say, 
M 4. o% followed by N ~ oo prepares the system in the bulk phase A. 

On the line (0, j )  the choice of field h(i)=aJl with a > 0  favors 
a(0, j)  = - 1 or phase B. If a > 1, common sense suggests that there would 
be an A I B interface essentially "at infinity" to minimize the free energy and 
no singularity other than the critical point. This is confirmed by an exact 
result, (s) which also gives a phase transition for 0 < a <  1. Suppose we 
calculate 

rn(x) =lira <a(x, 0)> (2.4) 

where < > is the canonical expectation value and lira denotes the A phase 
selection procedure alluded to above with h(i)= -a  J1, 0 < a < 1 (and, of 
course, h =0) .  Let To(2 ) be the critical temperature. Then there exists a 
wetting temperature Tw(a) < To(2) such that 

lim re(x)= m* sgn[ Tw(a)-  T] (2.5) 
) c ~ o o  
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Thus for Tw(a) > T, there is a B film of infinite thickness at the surface. As 
T ~  T w ( a ) -  a new divergent length scale for m(x) emerges, denoted by 
~X(a, T) where 

~X(a, T ) ~  ( T w ( a ) -  T) -1 (2.6) 

Thermodynamically, this transition manifests a jump in the specific heat at 
T~v(a). Further details may be found elsewhere. (5'12~ 

The surface field term acting on {(i, j)} can be replaced by a column 
of perturbed bonds to "ghost" spins a(0, j), - M  >~ j ~< M with interaction 

M 

{ - aJl a(O, j)  a(i, j) + h"a(O, j)} (2.7) 
j-- M 

and h" --* - o e ,  fixing a(0, j ) =  - 1  for allj.  In this case it is useful to think 
of a low-temperature series expansion: any configuration of spins on the 
extended lattice is equivalent to a set of contours on the dual lattice 

A* = A - (�89 �89 (2.8) 

This set of contours separates antiparalM pairs of spins and only con- 
figurations with 0, 2, or 4 contour lines meeting at each and every vertex of 
A* are allowed in the A-phase selection limit. With probability one there is 
a single long contour running round the cylinder in the (0, 1) direction in 
this limit. The effect of the surface term (2.7) is to pin the contour elements 
at the surface, without any distinction between long and short contours. 

If we take the S.O.S. (solid-on-solid) limit, (13~ K1 + o% then any line 
{(i, j); i~> 0, j fixed} is crossed by one and only one contour element; this 
can only be the long contour, which now has no overhangs. There is a uni- 
que intercept x j +  1, xj some nonnegative integer on each horizontal line 
y = j, j integral. This construct is also referred to as the Onsager Temperley 
string. 

For a cylinder of circumference (2M + 1), - M ~ <  j ~< M, we arrive at 
the probability measure 

P{x  M ..... x M } = ~ e x p  - 2 K  ~ ]X j - -X j+I[  } (2.9) 
j =  M 

If the S.O.S. limit be taken on the surface term by the replacement 
Ko = aK~ and then setting K0 = KI - b and taking the limit K~ ~ 0% there 
is a surface term 

M 

[ I  { l+(e2b--1)~(xJ  ,0)} (2.10) 
j= - -M 
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Finally, departure from coexistence is allowed by including a term 

M 

l-[ e x p ( -  2hxj) (2.11) 
j = - - M  

where 

h =m(hb ,  T) h b (2.12) 

Here h b is the uniform applied field which induces a bulk magnetization 
m(h b, T). 

We now discuss how to relate the parameter K in (2.9) to KI and K2 
by considering phase separation in a strip. 

Consider a planar Ising spin lattice of length 2L + 1 in the (1, 0) direc- 
tion in units of lattice spacing. Let it be divided into 2N identical slabs. 
Then, as a guess, the S.O.S. weight becomes, on integrating out small fluc- 
tuations 

N 

W = e  -2L~h ~ e -2xly?--vj-fl (2.13) 
j =  - - N +  1 

where the yj are continuous real variables with - o e  < y  j <  oe but 
y - N = YN = 0. The z- h is a "horizontal" surface tension and K is a coupling 
constant to be determined. Let r be the incremental free energy of such a 
string. Then Fourier analysis shows that 

r = ~ivh _ 6 jlmo~ ~._~ log {~n f ~ 4K (2.14) 

with 

6 = l i m  N (2.15) 
L 

the length-scale factor. Elementary asymptotics give 

= 6z h + 6 log K (2.16) 

Now v is known exactly for the planar Ising model (14) 

v = 2 ( K 1 - K * )  (2.17) 

for an interface with normal (1, 0). 
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The parameters are fixed completely by the interface profile result. 
Consider the magnetization mM(x, 0) defined by an Ising strip lattice with 
vertices (i, j)  having - M ~< j ~< M, - oo < i < oo. Then (15) 

lira mM(eM a, O) = m* sgn(c~) q}(b I~1) (2.18) 
m --+ o o  

with 

and 

~ ( x ) = 7  e ~2 dt (2.19) 

b 2 --- sinh r(sinh 2K* sinh 2K,)-1 (2.20) 

The magnetization is obtained from the S.O.S. model by 

mM(X , O) =m*P{xo~ x}-m*P{xo> x} (2.21 

where P{xo <~ x} is calculated using the normalized equation (2.13) which 
evidently will not contain %. A result like (2.18) is obtained with 

b=Kxf2 (2.22) 

With (2.20) this then gives 

c5 sinh 
K 2 - (2.23) 

2 sinh 2K* sinh 2K~ 

On physical grounds, we expect to have 6 = 1/~ in the critical region. 
Since (16) 

2~r=  1 (2.24) 

this means 

1 
Kz = ~  sinh ( ~ ) { 1  + 0 ( ~ ) }  (2.25) 

using the results that K?=K 2 defines the critical point and that 
~A(K2-K*) -1. Thus, as ~ ~ o% K ~  1/2~, giving the natural scaling of 

the xi by ~ which is expected from standard critical point theory. 
Motivated by fluctuation theory and the remarks of Fisher, Fisher, 

and Weeks, (17) the reader might prefer a Gaussian form in (2.9) and (2.13) 
where K is chosen to take into account angle-dependent surface tension. (18~ 



An Exactly Solved Model w i th  a Wett ing Transition 627 

This certainly gives (2.18) and (2.20) correctly, but does not lead to an 
exactly solvable wetting problem. All models e x p { - 2 K  Ix j - x  j_ 1[ P} with 
p~> l are considered to be in the same universality class. (19) Further, for 
two dimensions it does not seem to matter if the xj are continuous or dis- 
crete. This is certainly not true for three dimensions, where Fr6hlich and 
Spencer (2~ have shown that the free S.O.S. model for coexisting phases has 
a phase transition of roughening type at finite, nonzero temperature when 
the xj are integral. 

In the next section we use transfer kernel ideas to compute the par- 
tition function Zu(x) for a domain wall on A* pinned at (0, 0) and (x, N). 
This gives the probability density pu(X, 0) that an S.O.S. wall from (0, - N )  
to (0, N) passes through (x, 0) as 

ZN(x)  2 
pN(X, 0) = Z2N(0-------- ~ e-2hx[] Aft a6(x)] (2.26) 

The mathematical analysis is somewhat complicated, so we have given a 
summary of the results in Section 7. 

3. THE TRANSFER MATRIX 

By using customary transfer matrix ideas we have 

ZN(Xo)= [6xo, (T1T2T3) ~ ~ T16o] 

where 

and 

( T l f ) ( x ) = ; ~  e 2xix Yf(y) dy 

(T2 f ) (x )=e  2h~f(x) x~>0 

(3.1) 

(3.2) 

(3.3) 

( T3 f ) (x)  = f (x )  + af(O) 6(x) (3.4) 

provided f (0)  exists. The function fix is defined by 

long(x) 6Xo(X) dx = g(xo) (3.5) 

for all Xo ~> 0. 
The operator T1 is bounded on L2(R+) and is self-adjoint there, with 

continuous spectrum on [0, 1/K]. Thus we can construct T1/2, which is 
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again bounded and self-adjoint (in fact, real symmetric) and thereby 
introduce a self-adjoint operator 

with 

T= TI/2T2 T3 TI/2 (3.6) 

~(x, y) = f o  dz rl/2(x, z) e 2hZTl/2(z, y) 

+ aTl/2(x, 0) TI/2(0, z) (3.7) 

Evidentally i? is bounded; moreover, whenever a > 0 ,  (i?f, f)~>0 for all 
fEL2(R+). Thus the spectrum is nonnegative. For h > 0 (strictly), T is also 
Hilbert-Schmidt; it therefore has a complete set of eigenfunctions r  with 
eigenvalues 2m such that 

;~ < oo (3.8) 
n = 0  

It follows that (3.1) can be written as 

ZN(X )__ ~ (TU(JO(O)(TI/2~,)(x) ,~j-1 (3.9) 
n ~ O  

with convergence assured by (3.8) for N~> 3. 
It turns out that TI/2, while being readily constructed in principle, is 

not a particularly convenient object. It is easier to proceed with the unsym- 
metrized eigenvalue problem 

T1T2TaOm= 2m@m (3.10) 

The eigenvectors Cm are associated with those of i? by 

tPm = TI/2~, (3.11) 

Returning to (3.4), it is clear that (3.10) must work in a subspace of 
L2(R+ ); we choose C(2)(R+) which is dense in L2(R+ ) and in which ~,(0) 
is always defined, giving 

fo~ 2KLx-Yle-2hy~J,(y)dy+ae-ZKxo,(O)=J.,O,~(x ) (3.12) 

The differentiability enables us to convert (3.12) to a Schr6dinger equation 
by using the Green's function identity 

~x2--4K2 e 2Xlx y l=--4Kc~(x-y)  (3.13) 
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which gives 

2, ~ 2  ~ = (4KZ2n- 4Ke-2ax) 4% 

with the boundary condition 

"~n [~'/(n 1 ) ( 0 )  - -  2K~,,(0)] = - 4 K a y , ( 0 )  

The substitutions 

and 

transform (3.14) to 

629 

(3.14) 

(3.15) 

giving 

ordered by 
0 < 0j(c~) < r ,(~) (3.22) 

v 2 ~ E~(e)2-v2]  -1 (3.23) 
4 ~  = j = l  

d2G l dG --s 
dx 2 ~-u-~u § 1 G--0  (3.18) 

which is Bessel's equation (21 23) with solutions 

a(u )  = A J , ( u )  + B J _ , ( u )  (3.19) 

From (3.16) we see that the large x behavior is controlled by small u. The 
standard power series for J , ( z )  shows that to place ~n in L2(R+)  we must 
have B = 0. The boundary condition (3.15) reduces to 

J ~  _ l (0cv)  = 2KavJ~(o~v) (3.20) 

Thus for a = 0 the eigenvalue problem reduces to the location of zeros 
of J~_ l(Z); these are pure real and simple for c~ > 0. (23) The main features of 
the solution of (2.19) can then be obtained from the Mittag-Leffler expan- 
sion (see Ref. 23, p. 61, eq. 7.9.3) of J,(c~v)/J,_l(o~N ) in terms of the 0j(c~) 
defined by 

J=- i  [c~O~(c~) ] = 0 (3.21) 

c~ = 2K/h v 2 = I /2K (3.17) 

u = ~ve -hx (3.16) 
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First, we check that (3.23) only has solutions for v 2 pure real. Denote 
the right-hand side of (3.23) by F(v ,  cQ; then 

OF= 2v ~ fj(~)2 
Ov [~ /~)~  - v~] ~ j '=l 

(3.24) 

which implies F(v ,  c~) is monotone increasing on (0, oe) except for infinite 
negative jump discontinuities whenever vj = fj(cQ. From its definition it is 
clear that 

F[vj(e), ~] = 0 (3.25) 

where 
vj+ ,(c~) > vj(c~) > 0 

and 
J~ [c%(cQ] = 0 (3.26) 

Thus a simple fixed point argument shows that for a > 0 there is a solution 
of (3.20) in [0, ~1(c~)] and one in each interval [vj(c~), ~j+l(c~)] for j >  1. 
For a < 0 ,  on the other hand, there is a solution in each interval 
[fj(c~), vj(c~)] for allj>~ 1. In addition, returning to (3.23), we find a single 
solution with v2< 0. This corresponds to a value )~ < 0 from (3.17), but this 
is not excluded by positivity, which was only proved for a >~ 0. 

In this paper we are particularly interested in the behavior near 
coexistence which obtains for large c~. The asymptotic behavior of (3.20) 
can be investigated by writing it as 

2 K a v  - (l/v) = J(~l )( o~v )/ J~( o~v ) (3.27) 

using the recurrence relations (see Ref. 22, p. 361, eq. 9.1.27) and then 
applying Olver's results (see Ref. 22, pp. 368-9) to obtain 

where Ai(x) is the Airy function (see Ref. 22, Chap. 10, p. 446 et seq.) and 
is given by the real solution of 

2 ~v dt (  t2 _ 1) 1/2 t (3.29) 
( -  ~)3/2 = 5 j, 

for v > l  and by 

for v <  1. 

3/2 _ 3 fv 1 ( 1  - -  t 2 )  1/2 
- ~ dt t (3.30) 



An Exactly Solved Model wi th  a Wett ing Transition 631 

First, we look at the solution for ve[O, fl(c~)]. By (3.30), r > 0  and the 
asymptotic expansion of the Airy functions gives 

2 K a v  2 - 1 = x / 1  - v ~ [1 + 0(1/cQ] (3.31) 

In the limit c~ --. o% (3.28) for v e (0, 1 ) becomes 

1 
- 1 - ~/1 - v 2 (3.32) 

2 K a  

which only has a real solution for a > ac, where the critical binding is given 
by 

1 
ac = 2--- ~ (3.33) 

That this solution is approached in a stable way as ~ --* oc may be checked 
by a Newton-Raphson method on (3.28) and (3.30); we cannot rely on 
(3.31) since the 0(1/~) term is i-dependent. 

The sticking phenomenon is reminiscent of the spherical model. (24) 
We now investigate the solutions for v > fl(c~) in the large ~ region. 

From (3.28) it is clear that the solutions v interlace the zeros of Ai(c~2/3~) 
with v and { associated by (3.29). With the solution 

Ai(as) = 0 (3.34) 

it is known (see Ref. 22, Chap. 10, p. 446 et seq.) that for integral s~> l 

a,  = f [ ( 3 7 z / 8 ) ( 4 s  - 1)] (3.35) 

where 

f ( z )  ~ Z2/3[1 q- 0(l/z2)] (3.36) 

Returning to (3.28) and (3.29), it is clear that the behavior of solutions 
depends qualitatively on whether { -  0 or whether { ~ 0 

R e g i o n  A :  s o l u t i o n s  v~, j ~ a .  We have vj ~ 1, and the solutions 
interlace 

t vj = 1 + 2 l [ ( 3 g / e ) ( j -  1)]2/3 (3.37) 

R e g i o n  B: j ~> a. We have vj ~> 1 and the solutions interlace 

vT- ( j -  ~) ~/~ (3.38) 
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In going from region A to B the spacing of the vj broadens. The interlacing 
estimate can be refined by applying the Newton-Raphson method, 
iterating from the zeros of Ai'(a2/3r in (3.28). 

The foregoing analysis shows that a--. oo and a -*  a~+ is a critical 
region for the qualitative behavior of the spectrum of the transfer operator. 
We now extract scaling variables from (3.28) and (3.29) or (3.30) 

Let the solutions of (3.28) be 

Y ~ 1 - -  ~ - 2 / 3  7 (3.39) 

as 7 ~ oo. Then we should introduce the scaling variable ~ by the limiting 
procedure a --* ao, ~ --* oo such that 

~ = s - l i m  (a-ao \ ao ~ /3)  (3.40) 

exists. This gives 

21/3Ai(1)(21/37) 

Ai(2~/37) 
= - , ~  + 2a 1/37 -4 /3)  +a-2/3 + 0(~ (3.41) 

a c  

Equation (3.4I) shows corrections to scaling on the equation 

21/3Ai'(21/37) = -~Ai(21/37) (3.42) 

the solutions of which are illustrated in Fig. 2. Notice, as 8 --* oo we have 
the limiting behavior 

27 ~ fi2 _ 1/~ (3.43) 

which agrees with (3.32). As a rnathematical curiosity, (3.42) is equivalent 
to the Ricatti equation 

d~/d7 = -2 7  + fi2 (3.44) 

We now examine the eigenfunctions of (3.10). The eigenfunctions ~nof 
are a complete orthonormal set for L2(R+), Using (3.11), the correct 

orthonormalization for the ~/m is 

(~]m, T2 T3~t m)= Am ~nm (3.45) 

which gives 

fo r e  -2hx dx ~b* (x) I~m(X ) -~- atp*(O) ~.lm(O ) = AmOnm (3.46) 
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Fig. 2. Graph of eigenvalues "./~ vs ~. 
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Taking (3.19) with B =  0, (3.16) and the substitution t =  e x p ( - h x )  gives 

t dt J~(c~v~t) J=(C~Vmt) + aJ~(c~v~) J~(C~Vm) - - ( K A n v  ~) C~nm (3.47) 

where the normalized eigenfunctions are 

O , ( x )  = AnJ~(Tvne  h~) (3.48) 

These integrals are standard (see Ref. 21, Chaps, 12, 13); with (3.20) they 
confirm orthonormality and give 

A]Kv~[J~(c~v , ) ]2[1  - (2a/ac)  + (a/ac) 2 v 2 + (2a/C~ac)l = 2h (3.49) 

822/43/3-4-16 
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First consider the case a > ao and h ~ 0. We have 

~ l(X)/~bl(0) ~ exp {cd/3 [~(x) - 4(0)] } 

from the asymptotic form of the Bessel functions, where 

3/2 3 1 

Abraham and Smi th  

(3.50) 

along the line h = 0. 

- - 1  = 2Kx/1  _ v~ (3.52) 

= a [ 1 -  (a/ac) ] 1 (3.53) 

where 

and 

If (3.12) were solved with h = 0 at the outset, there would be a con- 
tinuous spectrum on [0, l /K]  with "eigenvectors ''25 

O~(x, w) = ( A ( o  )/~) 1/2 s i n [ o x -  0(o))] 

tan 0(co) = ~o/[ (4K 2 + ~o 2) a -- 2K] 

A ( ~ )  = 4K / (4K  2 + o92) (3.56) 

In the above, o > 0, when and only when a > ao, an isolated eigenvalue, is 
found above the continuum described exactly by (3.51) and (3.52). 

Evidentally, as h ~ 0 + ,  any point v >  1 must be a limit point of 
solutions of the basic eigenvalue equation (3.20). 

(3.54) 

(3.55) 

4. INCREMENTAL WALL-FREE ENERGY 

We define the incremental wall-free energy by fX(a ,  h, K) where 

- ~ 6 f X ( a ,  h, K) = Zh + lira L l o g  ZN(O) 
N ~ o o  D/  

(4.1) 

with the critical behavior 

Hence, holding x fixed gives 

lira ~l(X) = e x p ( - 2 K x / 1  - v~x) (3.51) 
h ~ O  ~]1(0 ) 

with Vo given by (3.32). On the line h = O, (3.51) establishes a length scale 
defined by 
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with 6 given by (2.15) and Zh by (2.16, 17, and 23). The first term on the 
right comes from the horizontal bonds, which are now given a coupling K 
in the S.O.S. case. The partition function ZN(O) is from (3.1). We proceed 
here with ZN(X ). When h > 0, the eigenfunctions ~ .  of T~ T2 7"3 are com- 
plete in L2(R+); this is the Fourier-Dini analogue of Fourier series con- 
vergence (see Ref. 21, Chap. 18). Thus we can expand T~g0 in the (J~ which 
satisfy (3.46) and obtain 

Tl~o = ~ @k~kl(@k, T2T3T160) (4.2) 
k-0  

and then 

ZN(x) : ~ 4,~(x) ;t f -  2 [q,~, (r2 T3 r ,)  6o] (4.3) 
k=0 

By using the substitution t=e -h-~, the scalar product in (4.3) becomes 

(Ok, T2T3TlcSo)=Ak tl+~dtJ~(c~vkt)+aJ~(~Vk) 

= 2A~(aJv~) J~(~vk) (4.4) 

by using standard integrals (see Ref. 21, Chaps. 12, 13) and (3.20). Thus we 
have 

ZN(X) = ~ A2J~(~Vk e-hx) J~(~vk) 2~ 1 (4.5) 
k=0 

and can readily prove that 

x a (4.6) - f i f  ( , h, K) = z(0) + (2/6) log Vo 

valid for h > 0. When h = 0 and a > a~ we get (4.6) again, but for a < a~ the 
term (2/6) log Vo is missing. This part is a simple manipulation of a con- 
tinuous spectrum. 

By inspection of (3.20), the minimal solution v0 (and, indeed, any 
other) is real-analytic in h and a. On h = 0, a -  ao > 0, we have 

v 2= 1 -  [ (a ja ) -  132 (4.7) 

from (3.32). Thus flf~(a, O, K) has a jump in its second K partial derivative 
at Ko = 1/2a. The first two terms on the right of (4.6) are the incremental 
free energy of an S.O.S. string with h = 0  and no binding or additional 
geometrical constraint. 
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Using (3.39) and (3.42) we can go to the scaling region 

s - limcd/3 [ - ~fX(a, h, K) - z(0)] = Vo(a) 

with a given by (3.40) and Vo on the maximal branch of (3.42). 

(4.8) 

. FILM THICKNESS 

The probability density that the S.O.S. walk from (0, - N I )  to (0, N2) 
passes through (x, 0) with x > 0 is given by 

p[(x ,  0) I N1, N2)] = ZN~(x) ZN2(X) e-2hx/zN1 + N(2 ~ 

for h > 0. The mean width of the interface may be defined by 

= x d x  lim p [ ( x , O ) l N 1 , N 2 ]  
N I , N 2  + oo 

Using (4.5) and (3.49) gives 

(5.1) 

2h 
2 = 1 - (2a/a~) + (avo/ao) 2 + (2a/~a~) [J~(c~Vo)] -2 

;o o X xe2hx  dxEJ~(c~voe-hX)] 2 

(5.2) 

This integral can be carried out by noting the identities 

(d /dx){x  2 aiZ(x) - x[Ai ' (x)]  2 + Ai(x) ai ' (x)} = 3x ai2(x) 

and 

Use of the eigenvalue equation (3.42) then gives 

s--limc~ 1/3)2= 1 { ~ } 
2(a22270) 70 

(d /dx){x  Ai2(x) -  EAi'(x)] 2 } = Ai2(x) (5.6) 

(5.4) 

(5.5) 

(5.7) 

s - l imc~ l/3~=[22/3KAi2(21/3?o)(g12-2To)] i x  uduAi2(21/3yo+U ) 

This has a simple scaling limit. Inserting (3.39) and (3.40) and rescaling the 
integration variable gives 

(5.3) 
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Fig. 3. G r a p h  of scaled mean  film thickness ff vs. 4. 

As 8---, o% a careful analysis shows that  the r ight -hand side of (5.7) 
vanishes. Indeed in that  limit ff has the finite value 

2 ~ ao /4 (a  - ac)  (5.8) 

The scaled film thickness s - l i r a  3K~-~/3)2 is represented graphical ly in 
Fig. 3. 

6. C O R R E L A T I O N  L E N G T H S  A N D  D R O P L E T  S H A P E  

Examina t ion  of Z N ( x )  suggests tha t  the scaling idea be applied to the 
variable N as well as to x. Let us define 

t = s - lim c~ -2/3N (6.1) 

and 

We then have existence of 

with 

u = 2K s - lira ~ - 1/3x 

F(u ,  t)  = s - lira Z~2,3,(c~ l /3u /2K)  

F(u ,  t~ = ~" K-Ne2"~k Ai[21/B(u+7-k)] 

' kz'2_o 82 - 27k Ai(21/37k) 

(6.2) 

(6.3) 

(6.4) 
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It follows that 

a2F 2uF= ~F (6.5) 
~?u 2 at 

With the boundary conditions 

F(u, 0) = lim 6(u + ~) (6 .6)  
e ~ O  

and 

K Ne2tyk 
g(o, t )=  ~, ~_2- - - -  

~=o a -27~ 
(6.7) 

This is a Euclidean Schr6dinger equation, showing the underlying diffusive 
character of the problem. 

This also permits analysis of the statistics of a point (x, y) on the 
S.O.S. string, given that the string passes through (0, 0). Consider 

lim p[(x, 0) [  y ,  N 2 ]  = p(xl y) 
N 2 ~  oo 

where 

2k) J~(c~Vo e-hx) -hx v J~(evke ) J~(e k) (6.8) 
p ( x [ y )  = ~ A~ ~o y -  1 )~oj~(C~Vo ) 

k = O  

Passing to the scaling limit 

y = s - lim c~-2/3y (6.9) 

2 = 2Ks  - l i m  c~-1/3x (6.10) 

gives 

p(~l 39) = 2 ~ e2y(vk vo) Ai[21/3(.~ + 7k)] Ai[21/3(7o + x)]  
k =o ~72 -- 27k Ai(21/37k) Ai(21/37o) 

(6.11) 

The conditional expectation of 2 is then 

e.~(~k s0) 1 
E(2[ y) 

~5 _-- ~-~ k Ai(2~/3Vk ) Ai(2~/37o ) 
k = 0  

;o o x x dx Ai[21/3(x + Yo)] Ai[21/3( x + 7k)] (6.12) 
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Use of the collection of Airy function integrals in the appendix gives 

e2Y(~k-~~ yo q-7k-  a2 1 [  a 2 1  
E(21 fi) = ~ a2 - 27k (Yo + ~dk) 2 "q" 5 a 2 - -  27o-  7o 

k = l  
(6.13) 

Thus the limiting value E(21 oo) is approached from below on a length 
scale of 1/(y0-71). This defines a correlation length parallel to the wall by 

s - l i m  ~ll(a, h) ~ 2/3 = 1/(~0__71 ) (6.14) 

where the right-hand side is given as a function of a by appropriate 
solutions of (3.42). 

In view of the Young-Dupr6 equation mentioned in the introduction, 
it would be very interesting to obtain the contact angle. One might be 
tempted to try the scaling limit definition 

tan 0=  lim E(ff] fi)/fi (6.15) 
y ~ 0  

It follows from (6.13) that 

tan 0 = 2  ~ 1 a2--70--Yk (6.16) 
~=lYo-Yk a 2 -27e  

Since Yk ~ -k2/3 (as k ~ oo), this series diverges. 
Bearing in mind (6.9) and (6.10), a more reasonable definition is in 

terms of the unscaled lengths 

tan 0 = lim [E(xl y)/y] (6.17) 
y ~ 0  

analyzed asymptotically for e large. 

7. S U M M A R Y  

In this paper we have shown that the partial to complete wetting 
transition of two phases at coexistence can be described by a string model 
which extends to the region near coexistence. 

Returning to definitions (2.9)-(2.11), there is a critical value of a, 
denoted ac, ac = 1/2K, and a scaling variable 

?t= s _  lim (2K~ l/3 a -  ac (7.1) 
\-g-, J ac 

a ~ a c  
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I I I 
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Fig. 4. 
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0.8 

0.4 

s-  tim E=l(a,h) ~ -zl3 
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2 t, 6 

Graph of scaled correlation length Crl parallel to the surface vs. ~. 

__[~fx ~ "C(0)  -~- ~ - - 2 / 3 ) ) 0 ( 4  ) ( 7 . 3 )  

which is represented graphically by the uppermost branch in Fig. 2. The 
film thickness is 

2~cd/31_}_~ h ,, ] (7.4) 
3K L2(a ~ -  270)- roj 

which is shown in Fig. 3. 
Our final result is a correlation length ill parallel to the surface: 

~ll(a, h) ~ cd/3/[70(a) - 71(a)] (7.5) 

which is plotted in Fig. 4. 

A P P E N D I X  

We consider Airy function integrals of the form 

fo I ( a , b ; p ) =  x P A i ( x + a )  A i ( x + b ) d x  (A1) 

loosely speaking. 
The incremental free energy has the scaling behavior 

~t ,'~ h-1/3( T o - T) (7.2) 
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for p an integer ~>0. For a =~ b, if we differentiate (A1) twice with respect to 
a, use the differential equation for Ai(x + a), and rearrange the result, we 
obtain 

I(a, b; p + 1 ) = (32/0a 2) I(a, b; p) - aI(a, b; p) a ~ b p >~ 0 (A2) 

a useful recurrence relation. If we consider now 

;o o I(a,b;O)= A i ( x + a )  A i ( x + b ) d x  (13) 

for a r b, we may write it as 

1 ~o 
I(a,b;O)=-~-~_bf ~ [ A i ' ( x + a ) A i ( x + b ) - A i ( x + a ) A i ' ( x + b l ] d x  (14) 

by using the differential equation for Ai(x) in (A3). Integration by parts 
then gives 

I(a, b; 0) = [1/(a - b)] [Ai'(b) Ai(a) + Ai(b) Ai'(a)l  (15) 

The recurrence relation (A2) then gives, in particular 

I(a, b; 1 ) = [ - 2 / ( a  - b) 3 ] [Ai'(b) Ai(a) - Ai'(a) Ai(b)] 

+ [1/(a - b) 2 ] [(a + b) Ai(a) Ai(b) - 2Ai'(a) Ai'(b)] (16) 

Establishing recurrences for I (a ,a;p)  is not so simple. We set 
J(a; p) = I(a, a; p) and 

K(a; p) = xPAi2(x) dx (A7) 

so that 

J(a; p)= 
p . V  

l=0 l!(p - l)! ( - a ) '  K(a; p - l) (AS) 

Now a generalization of (5.5) gives the identity 

(d/dx)[x p+ 1AiZ(x)- xP [Ai'(x)] z + px p-  iAi(x) Ai'(x)] 

= ( 2 p + l ) x P A i 2 ( x ) + p ( p - 1 ) x P - 2 A i ( x ) A i ' ( x )  (19) 

This gives, for p ~> 3 

K(a; p ) = - -  
1 

{ a P [ A i ' ( a )  ] 2 - a p +  1Ai2(a) - p a  p -  1Ai(a) Ai ' (a)  } 
2p + 1 

p ( p -  1)(r 
+ - ~ 2 - ~ 5 2 ) K ( a ; p - 3 )  (A10) 
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To start this recurrence scheme for J(a; p) we may then use (from 5.6) 

K(a; 0) = [Ai ' (a)]  2 - aAi2(a) (A l l )  

and (from 5.5) 

K(a; 1) = �89 2 - aZAi2(a) - a i (a)  Ai'(a) } (A12) 

and (from A9 with p = 2) 

K(a; 2) = �89 2 - a3Ai2(a) - 2aai(a)  a i ' (a )  + ai2(a)} (A13) 
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